Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Oleg Ya. Borbulevych

Department of Chemistry and Biochemistry, 251
Nieuwland Science Hall, University of Notre
Dame, Notre Dame, Indiana 46556, USA

Correspondence e-mail:
oborbulevych@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.046$
$w R$ factor $=0.115$
Data-to-parameter ratio $=14.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

2-Methyl-6-(1,7,7-trimethylbicyclo[2.2.1]-hept-2-yl)phenol

In the title compound, $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}$, the six-membered ring of the bicyclo[2.2.1]heptyl moiety has a boat conformation and the phenol group is in an equatorial position. In the crystal structure, centrosymmetric dimers are formed via intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds with rather unfavorable geometry.

Comment

The title compound, (I), belongs to the class of terpenophenolic compounds. Some of these compounds are natural products and possess biological activity (Banthorpe \& Charlwood, 1972). Others, like (I), are widely used as antioxidants in industry and as starting components in the synthesis of some drugs and fragrant substances (Kuzakov \& Shmidt, 2000; Swift, 2004) or in asymmetric syntheses (Berkessel et al., 2002). Thus, the synthesis and structure of (I) and similar compounds is of great importance (Chukicheva et al., 2003).

(I)

The present crystallographic study has shown that all bond lengths and angles in (I) are close to standard values. The C1C6 six-membered ring has a boat conformation (Fig. 1). Atoms C 1 and C 4 deviate from the plane of the remaining atoms of the ring by 0.909 (3) and 0.809 (3) \AA, respectively. The methyl group at C 1 and the phenol group at C 2 are in equatorial positions (Table 1).

In the crystal structure, molecules form centrosymmetric dimers via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2). However, this hydrogen bond possesses rather unfavorable geometry $\left(\mathrm{O}-\mathrm{H} \cdots \mathrm{O}=118^{\circ}\right)$, probably because of the presence of the substituents in both ortho positions of the phenol ring and sterically restricts an incoming acceptor of the hydrogen bond. It is also of note that the distance ($2.19 \AA$) between H atoms ($\mathrm{H} 1 \cdots \mathrm{H} 1^{\mathrm{i}}$) (symmetry code as in Table 2) in the dimer is considerably shorter than the sum of the van der Waals radii for two H atoms ($2.32 \AA$ A Zefirov \& Zorky, 1989).

Experimental

The synthesis of (I) was recently reported (Chukicheva et al., 2003). The crystals were grown by isothermal evaporation of a solution of (I) in hexane.

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}$

$M_{r}=244.36$
Triclinic, $P \overline{1}$
$a=7.252$ (4) \AA
$b=7.442$ (4) \AA
$c=13.430$ (8) A
$\alpha=93.49(5)^{\circ}$
$\beta=98.74(5)^{\circ}$
$\gamma=94.56(5)^{\circ}$
$V=712.2$ (7) \AA^{3}

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.139 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 24 \\
& \quad \text { reflections } \\
& \theta=10-11^{\circ} \\
& \mu=0.07 \mathrm{~mm}^{-1} \\
& T=23(2) \mathrm{K} \\
& \text { Prism, colorless } \\
& 0.50 \times 0.20 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

Data collection

Siemens $P 3$ diffractometer

$$
\begin{aligned}
& \theta_{\text {max }}=25.1^{\circ} \\
& h=0 \rightarrow 8 \\
& k=-8 \rightarrow 8 \\
& l=-15 \rightarrow 15 \\
& 2 \text { standard reflections } \\
& \quad \text { every } 98 \text { reflections } \\
& \text { intensity decay: } 3.2 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0657 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$S=0.79$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.15$ e \AA^{-3}
$\Delta \rho_{\text {max }}=0.0 .15 \mathrm{e}^{-3} \AA^{-3}$.
167 parameters

Table 1
Selected torsion angles (${ }^{\circ}$).

$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 12$	$-149.02(17)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 7-\mathrm{C} 9$	$173.10(19)$
$\mathrm{C} 8-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$163.92(18)$	$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 10$	$60.1(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 7-\mathrm{C} 9$	$60.5(2)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 10$	$167.18(16)$

Table 2
Hydrogen-bonding geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1 $\cdots \mathrm{O}^{\mathrm{i}}$	0.82	2.45	$2.933(3)$	118
Symmetry code: (i) $-x, 2-y,-z$.				

Symmetry code: (i) $-x, 2-y,-z$.
All H atoms were located in difference Fourier syntheses. All methyl H atoms were refined as part of a rigid group, which was allowed to rotate but not tip or distort, and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$. Other H atoms were refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$ or $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. The bond distances were

Figure 1
The molecular structure of (I), showing displacement ellipsoids at the 50% probability level. H atoms have been omitted.
constrained: methyl $\mathrm{C}-\mathrm{H}=0.96 \AA$, methylene $\mathrm{C}-\mathrm{H}=0.97 \AA$, methine $\mathrm{C}-\mathrm{H}=0.98 \AA$, aromatic $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{O}-\mathrm{H}=0.82 \AA$.

Data collection: P3 Diffractometer Control Program (Siemens, 1989); cell refinement: P3 Diffractometer Control Program; data reduction: XDISK (Siemens, 1991); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXL97.
$P 3$ and XDISK software packages were accessed via the X-ray Structural Centre, Moscow. The author thanks Dr A. V. Kuchin for help in obtaining crystals of (I).

References

Banthorpe, D. V. \& Charlwood, B. V. (1972). Chemistry of Terpenes and Terpenoids, edited by A. A. Newman, pp. 337-411. London: Academic Press.
Berkessel, A., Vennemann, M. R. \& Lex, J. (2002). Eur. J. Org. Chem. pp. 2800-2807.
Chukicheva, I. Yu., Kuchin, A. V., Spirihin, L. V., Borbulevich, O. Ya., Churakov, A. V. \& Belokon, A. I. (2003). Butlerov Commun. 4, 9-13.
Kuzakov, E. V. \& Shmidt, E. N. (2000). Chem. Nat. Compd, 36, 245-257.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1989). P3 Diffractometer Control Program. Version 4.20PC. Siemens Analytical X-ray Instruments Inc., Karlsruhe, Germany.
Siemens (1991). XDISK. Version 4.20PC. Siemens Analytical X-ray Instruments Inc., Karlsruhe, Germany.
Swift, K. A. D. (2004). Top. Catal. 27, 143-155.
Zefirov, Yu. V. \& Zorky, P. M. (1989). Russ. Chem. Rev. 58, 713-746.

